

Differential effects of fingolimod and other transient receptor potential melastatin 7 (TRPM7) channel modulators on calcium paradox-induced myocardial injury in rat hearts

Matthew AMONI

BACKGROUND

- Calcium is drives cardiac cellular function.
- Abnormalities of calcium (Ca²⁺)
 homeostasis underlie the
 pathophysiology of several
 cardiovascular conditions.
- Calcium homeostasis is critical for signalling.

- Non-selective cation channels such as transient receptor potential (TRP) channels, specifically TRPM7 are implicated in abnormal Ca²⁺ homeostasis (Gwanyanya et al., 2004)
- However, the contribution of such non-selective channels to cardiac injury at organ level is unknown.
- We present preliminary work interrogating background contributors to Ca²⁺ homeostasis.

INTRODUCTION

- **Calcium Paradox:** Ca²⁺-mediated myocardial injury due to Ca2+ paradox (CP) has long been established experimentally in hearts temporarily perfused with Ca²⁺-deficient solutions (Zimmerman and Hulsmann, 1966).
- Clinically, varying degrees of the CP phenomenon may occur peri-operatively.
- Experimentally, cardiac tissue storage solutions and isolation of cardiomyocytes for various cellular studies.

Otto Loewi: A drug is a substance that when injected into an animal, produces A PAPER.

Novel specific exogenous pharmacological blockers to evaluate TRPM7:

fingolimod (FTY720) (Qin et al., 2013) and nordihydroguaiaretic acid (NDGA) (Chen et al., 2010)

AIM

We therefore investigated the effects of TRPM7 channel inhibitors:

- fingolimod (FTY720)
- nordihydroguaiaretic acid (NDGA),
- as well as Mg²⁺ pre-treatment

... on Ca²⁺ Paradox-induced myocardial injury (CP).

METHODS

The presence of cardiac TRPM7 proteins was evaluated by immunoblotting n=5-6.

Langendorff-perfused Wistar rat hearts:
intraventricular balloon – Hemodynamics;
triphenyltetrazolium chloride stain - infarcts size.

FTY720 (1 μmol/L), NDGA (10 μmol/L), or vehicle infused prior to a CP protocol consisting of 3-min Ca²⁺ depletion, followed by 30-min Ca²⁺ repletion n=6-8.

MgSO₄ (270 mg/kg, intraperitoneally) or saline daily for 7 days were also subjected to CP n=6-9.

Stabilization	Drug	0mM Ca ²⁺	1.8mM Ca ²⁺
 20 min	5 min	3 min	 30 min

STATISTICS

GraphPad Prism 6 software package – ANOVA & t-test. Data are presented as mean ± SEM; P < 0.05 = significant.

The expression of TRPM7 channels in cardiac ventricular tissue:

Effects of NDGA and FTY720 on CP-induced hemodynamic changes:

Although both FTY720 and NDGA minimized the CP-induced elevation of left ventricular end-diastolic pressure, only FTY720 improved LV developed pressure (p=0.029). Pretreatment with Mg2+ affected CP-induced infarct size

Effects of NDGA and FTY720 on Ca2+ paradox (CP) induced infarcts:

FTY720, but not NDGA, decreased CP-induced infarct size from $64.6 \pm 5.3\%$ to $39.0 \pm 6.8\%$ (p=0.001; n=6).

Effects of Mg2+ pretreatment on CP-induced hemodynamic changes and infarcts:

CONCLUSION

TRPM7 protein presence in cardiac ventricular tissue.

Among the TRPM7 channel modulators tested, FTY720, but not NDGA or pre treatment with Mg2+, reversed CP-induced myocardial damage and dysfunction (suggesting that the action of FTY720 seems to be unrelated to the capacity of the drugs to inhibit TRPM7 channels)

FTY720 may have a potential therapeutic role during cardiac perfusion, but future studies need to investigate the mechanisms underlying the cardioprotective effect of FTY720 in CP.

ACKNOWLEDGEMENTS

Dr Fatma Altrag

Dr Roisin Kelly-Laubscher Dr Asfree Gwanyanya

Dept. of Human Biology:

Cardiac- Vascular and
Regenerative Medicine
Laboratory

