Echocardiography after Surgery for CHD

18th SA Heart Congress, 2017
Johannesburg, South Africa
November 9-12, 2017

Naser Ammash. MD
Professor of Medicine
Practice Chair, Cardiovascular Department
Mayo Clinic, Rochester
Temporal Trend in all cause mortality in CHD 1987-1988 and 2004-2005

Proportion of all deaths (%)

Age at death (years)

≥90
85-89
80-84
75-79
70-74
65-69
60-64
55-59
50-54
45-49
40-44
35-39
30-34
25-29
20-24
15-19
10-14
5-9
1-4
<1

Year 1987-1988

Year 2004-2005

Proportion of all deaths (%)
No cure after Surgery for CHD
Echo after Cardiac Surgery in CHD

Learning Objectives

1. Familiar with residua and sequaleae
 - Simple and complex
 - Palliation and repair

2. Recognize common post-operative Echo findings

3. When to call a friend: ammash.naser@mayo.edu
62-YO S/P Suture ASD Repair at age18
62-YO S/P Suture ASD Repair in 1965
Atrial Flutter

RVE Post ASD repair

Residual shunt
Missed associated defects
TV regurgitation
Pul. HTN with PR
62-YO S/P Suture ASD Repair at age 18
Atrial Flutter
62-YO S/P Suture ASD Repair at age 18
Atrial Flutter

Residual-recurrent ASD shunt
- Occurs in 5-10%
- Older age at time of operation
- Type of repair
- Progressive pulmonary HTN
41 YO Post AVS defect Repair at age 4

- Syncopal spell at age 20, advised PPM
- Now with severe dyspnea
Long term outcome in partial AVSD in 334 pts

• Survival
 • 93% at 10 yrs
 • 76% at 40 yrs

• Reoperation in 11%
 • LVOT obstruction in 2%
 • Mitral regurgitation in 9%

• Atrial arrhythmias in 16%
 • More if older age at operation
16 YO S/P VSD Repair
Loud Systolic Murmur
16 YO S/P VSD Repair
Loud Systolic Murmur
Double Chambered Right Ventricle

- Subpulmonic obstruction:
 - Hypertrophied trabeculations /septo-marginal band
 - Anomalous apical shelf

- Repair depends on symptoms and gradient
 - Cardiac catheterization often needed
Repaired VSD
Residua and Sequelae

- Residual VSD up to 20%
- Aortic regurgitation up to 20%
- Tricuspid regurgitation up to 27%
- Double chambered RV
- Pulmonary HTN
- Infective endocarditis < 2 / 1000 pt.yr
- Complete heart block 1 - 2%
- Atrial arrhythmias 5 - 23%

Late reoperation
68 old lady S/P CoA patch repair at age 13
Survival after Coarctation Repair
819 patients (1946-2005)

Patients with coarctation repair

Age & gender matched population

Survival (%) vs. Follow-up (years)
P < 0.001

Brown M, JACC 2013
54 re-operations in 43 pts

Spectrum of Reoperations After Repair of Aortic Coarctation: Importance of an Individualized Approach Because of Coexistent Cardiovascular Disease

CHRISTINE H. ATTEMHOFER JOST, MD; HARTZELL V. SCHAFF, MD; HEIDI M. CONNOLLY, MD; GORDON K. DANIELSON, MD; JOSEPH A. DEARANI, MD; FRANCISCO J. PUGA, MD; AND CAROLE A. WARNES, MD

- **Objective**: To determine the indications for and spectrum of late reoperations in adults who had previously undergone coarctation repair.
- **Patients and Methods**: We reviewed clinical, cardiac catheterization, and echocardiographic data and criteria for reoperation, surgical procedures, and outcome in 43 patients who underwent 54 reoperations between 1972 and 1996.
- **Results**: Of the reoperations for recoarctation or associated cardiovascular disease (or both), 20% were performed in asymptomatic patients and 80% in symptomatic patients. Associated cardiovascular disease included bicuspid aortic valve in 36 patients (84%), aortic arch hypoplasia in 12 (28%), true or false aortic aneurysm in 6 (14%), mitral valve disease in 6 (14%), and subvalvular aortic stenosis in 5 (12%). Surgical procedures included 22 recoarctation repairs and 32 other cardiovascular interventions. Simultaneous repair of recoarctation and associated cardiovascular disease was performed as a single-stage repair in 5 reoperations through a median sternotomy using an extra-anatomic, ascending-to-descending aortic bypass, with no complications. One patient died (surgical mortality, 1.9%) of preexisting severe pulmonary vascular obstructive disease.
- **Conclusions**: After coarctation repair, associated cardiovascular diseases are the most common cause for reoperation. An individualized surgical approach is important and may range from valve replacement or recoarctation surgery to extra-anatomic bypass combined with other cardiovascular procedures, enabling simultaneous repair of recoarctation and associated lesions. Despite complex surgical techniques and multiple reoperations, morbidity and mortality were low in our series.

Mayo Clin Proc. 2002;77:646-653
60 yr old survivor of repaired TOF
Chest Pain

- Repaired TOF at age 10
- DM, HTN, OSA, COPD
60 yr old survivor of repaired TOF

Myocardial Infarction
60 yr old survivor of repaired TOF
CABG day 5

Dismissed home on day 26
Pulmonary regurgitation severity

Color Doppler

- **Mild**: PR noted in RVOT not PA
- **Moderate**: PR noted in the main PA
- **Severe**: PR noted in the branch PAs
Pulmonary Regurgitation severity
PW or CW Doppler

Mild PR: Holo-diastolic

Severe PR: Abbreviated PR signal
PR post rTOF: Indication for Intervention

- Symptoms or failed CPX
- $RVEDV > 150 \text{ cc/m2}$
- $RVESV > 80 \text{ cc/m2}$
- *Moderate or more RVD; EF<45%*
- EF<55% or low CO
- PS/PR with PAP 2/3 systemic or PG ≥ 80
- *Branch PS with <30% flow to affected segment*
- Arrhythmias: Ventricular $>$ atrial
- Residual lesions: TR, AR, VSD
CTA in Congenital Heart Disease

- Excellent tool for evaluation of vascular structures
 - Aorta, PA, coronaries, fistula, aneurysm
- Alternative assessment of prosthesis
 - Leaflet motion, Thrombus or Pannus
 - Perivalvular leak
d-TGA post Atrial Switch
Mustard vs Senning

- Ake Senning: autologous tissue
- William Mustard: synthetic material

Differences are subtle and not easily recognized by noninvasive or invasive imaging
d-TGA post Atrial Switch
Long-Term Survival: 113 Mustard pts
80% at 20 years

Survival Free (%)

Death (sudden) (n=8)
Death (known cause) (n=19)
Arrhythmia (n=70)

Post-Op Evaluation: Atrial Switch Operation
Role of Echocardiography

• Systemic RV dysfunction 90%
• Systemic AVV regurgitation 40%
• Baffle obstruction 30%
 • Mustard: SVC > IVC > Pulmonary venous
 • Senning: Pulmonary > systemic veins
• Baffle leak 25%
• Sub–PS (fixed or dynamic) 25%
• Pulmonary HTN 10%

Consider calling a friend
34 YO S/P Mustard Procedure

Parallel course of great arteries
34 YO S/P Mustard Procedure
30 YO S/P Mustard procedure at age 2
34 YO S/P Mustard Procedure
32 YO S/P Mustard with CHF
Echocardiography after Surgery for CHD

Take Home Message

- Survival into adulthood expected in >90% of patients
 - No cure after surgical repair of CHD even simple CHD
 - Many have residua and sequelae
 - Need to know what you are looking for in postop CHD
 - Many are symptoms free
 - Re-intervention common
- Key role for Echo in identification of residua and sequelae
 - Incremental value for Cardiac MR and CT
Echocardiography after Surgery for CHD

When to Call a Friend

1. Known CHD history and have not seen or imaged such patients in the past:
 a. Tetralogy of Fallot, truncus arteriosus, pulm. atresia
 b. Transposition of Great Arteries
 c. Tricuspid atresia with or without Fontan
 d. Mustard, Senning, Rastelli, Jatene, Fontan, hemi-Fontan, Konno, Takeuchi

2. Unknown CHD history
 a. Something not normal
 b. Something missing
Thank You!

Ammash.naser@mayo.edu